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Algorithms for determining the generating function and the predictor for

some non-full-rank multivariate stationary stochastic processes are obtained.

In fact it is shown that the well known algorithms given by Wiener and Masani

(1958) for the full-rank case, are valid in certain non-full rank cases exactly

in the same form.
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1. Introduction. AN
One of the important problems in the prediction theory of multivariate
stationary stochastic processes is to obtain some algorithm for determing the
best l1inear predictor in terms of the past observations. Wiener and Masani
|
[9], [10] solved this problem for the full-rank case, when the spectral density
f of the processes is bounded above and away from zero, in the sense that
there exist positive numbers ¢ and d such that
(1.1) cl < f(e) < dI.
Masani | 2] improved their work substantially showing that the same alcorithm .
S
is valid if in lieu of (1.1) one assumes that e
S o
- (1.2) (i) f ¢ L, and (ii) f ¢ L]. Rt
¢ several other authors proved the validity of the same alaorithm under more ::x,\;
| +' _‘: d
oeneral settings, cf. for example Salehi [6), Pourahmadi [8]. However, all %_I {‘
LY :'\
these results are under the severe restriction of full-rank and there has been f“‘f.
no extension of Wiener and Masani's algorithm beyond the full-rank case. g;:{;
ese A
Ot kN
The purpose of this note is to show that the alaorithm remains valid t§}¥$
e
exactly in the same manner for the non-full-rank processes which satisfy the NN,
followina conditions ey
R
(1) The range of f(6) is constant a.e. (do}, iziy_
i
(1.3) (i) f el 9
Il
hr_.,_v:._‘
s # &:_:u::y
(ii1) e Ly, t:'_-é’:
GLNGS
# '-..:
where A" stands for the aeneralized inverse (to be defined later) of the matrix P
.-. - -’
el
A. In the full-rank case these conditions clearly reduce to the conditions (1.2), and 3%
::_::::‘:' ¥
st
T
et R R e T T e T e e el T e e
tw_“gum‘L’ L L e e e A e o N
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12
::_‘_ 2 -
:r,:,' hence our result generalizes Masani's algorithm in [2]. -
n\ ‘:;'
AN Masani's assumption and approach rests on a characterization (Theorem ;-_!
:.::- 2.4, [2]) for full-rank minimal multivariate stationary stochastic nrocesses. E:
- X
j{Z: Our motivation and assumptions are based on a characterization of Jo-regu1arity ©
- due to Makagon and Weron [1]. We will employ Wiener and Masani's algorithm ’ h
j-f.j to find the predictor of an associated full-rank process (to be clarified later), E:
:‘_‘. which is produced using the technique of Salehi and Miamee [5], and usina this we ]
will obtain our algorithm for the non-full-rank process. -
&3 In section 2 we set down the necessary preliminaries. Section 3 is
devoted to establishing our algorithm for determining the generating function X
and in section 4 we will show the validity of Wiener &nd Masani's aloorithm for N
o the best linear predictor.
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o 2. Preliminaries -

- In this section we set down notations and preliminaries. Most of these

T s

4,
o~
-

3; . are standard and can be found in [4], [9] and [10]. Let H be a complex 2
3 Hilbert space and q a positive integer. H? denotes the Cartesian product of Ef
o ' q-copies of H, endowed with a Gramian structure as follows: For any two jv
EE; vectors x = (x],...xq)T and y = (y],...,yq)T in H9 their Gramian matrix (x,v) ;
is defined by 1
= () = T .
= X
;: It is easy to verify that it has the following properties: ';
x (x,y) > 0 ; .
(x,x) =0 <> x=0:
-:E-f - m n m n .
ii; §Z1Aixi’jz13ixi) =.Z] jZ]Ai(Xi,Yj)Bj,
>
2 { where X,Y, Xi’ Yj are in H9, Ai’ Bj are constant gxq matrices, and A > 0 Q
’;? means A is a non-negative definite matrix. We say that X is orthogonal to Y o
’?f if (X,Y) = 0. It is well known that HY is a Hilbert space with the inner :2
product -_
T ?
jfj ((X,Y)) = trace (X,Y). %
L ¢t
ﬂ! A closed subset M of H3 is called a subspace if AX + BY ¢ M, whenever X and Y {
:E§ " are in M, A and B are gxq constant matrices. It is easy to see that M is a g
:Eg subspace if and only if M = M3 for some subspace ™ of H. For any X in H9, ,i
:u\ (X{M) denotes the projection of X onto M, and that is the vector whose k-th \?
a?ﬁ coordinate is (xklﬁ), which is the usual projection of Xk onto the subspace M. §
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A bisequence Xn, nelZ, in HY is called a g-variate stationary stochastic

process if the Gramian (Xm, Xn) depends only on m - n.

It is well known that every q-variate stationary stochastic process Xn

has a non-negative matrix valued measure F on [0,2m], called its spectral

measure such that

2m .
) = 2—1 Jr e~ 1(m - n)8yr gy,

0

f stands for the Radon-Nikodym derivative of the absolutely continuous (a.c.)

part of F with respect to the normalized Lebesgue measure d6, and it is called

the spectral density of the process.

To every stationary stochastic process Xn’ n ¢ Z the following subspaces

are attached:

M(+=) = sp (Xy» =@ < n < =), i.e. the subspace of He

generated by all Xn’ nelt,

M(n) = _SF (Xk’ - < kin)’

M(-=) = aM(n),
n
W(n) = 35 (X k 7 1),

A g-variate stationary stochastic process is called

(a) non-deterministic if M(+~) # M(n) for some and hence all n in Z,

(b) reqular if M(-») = 0

(c) minimal if M“(n) # M(+=) for some and hence all n ¢ Z,

(d) go-regu1ar if nM”(n) = 0.
n
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If Xn is non-deterministic then X £ M{n - 1) for all n, and hence it has

a non-zero one-sided innovation process

9, = X, - (X IM(n = 1)),

If Xn is minimal then Xn £ M (n) for all n, and hence it has a non-zero

two-sided innovation process

o, = X = (X, [M(n)).

The corresponding one-sided and two-sided predictor error matrices are defined

by

respectively. iv = (XVIM(O)) is called the best linear predictor of log v.
Clearly Xn is non-deterministic if and only if G # 0 and minimal if and only

if  # 0. A non-deterministic (regular) process Xn is said to be non-deterministic

(reaular) of full-rank if G is invertible. The process is called full-rank

minimal if it is minimal and its two-sided predictor error matrix I is
invertible.

It is useful to note that we have the following inclusions between these
various classes of processes

non-deterministic 2 regular 2 minimal 2 Jo-requ1ar 2 full-rank minimal.

The last inclusion is a consequence of Theorems 1 and 2 below, and the

others can be easily verified.
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It is known that

M(n) = TSP (g.,) + Mi-=).

Consider G as a linear operator on ¢? to Cq, C being the complex plane.

1 4
Let J be the matrix of the projection on c? onto the range of G, and we put
(VG + Jl)'1 = H. The normalized one-sided innovations are defined by h = Hg .
One can show that |4]
[ 2] r-
= ®)). r
Xo = LA/E by o+ (xp IM(- )) =
k=0 ‘.
although A 's in this decomposition are not unique, the coefficients Ak/G are 3
in fact unique and this enables us to associate the following function to our ;i
process - i{l
. o . D |
¢(e1e) - Ak/c e‘ke, -
k=0 -
™
this is called the generating function of the process. 2'
We shall be concerned with the class Lp (1 < p < ») of all axq matrix -
valued functions g on [0,2n] whose entries are in the usual Lebesgue space §i
Lp. Lg+ will denote the subspace of L2 consisting of those matrix valued R“
functions whose n-th Fourier coefficient vanishes for n < 0, i.e. N
R
Je""eg(e)de =0, for all n < 0. ;i
®
For any qxq matrix A there exists a unique qxq matrix A* such that (71 éL
afa = a, afan? - a? ]
# 3

(Afayx = (afa), (maf)* = mat, :




7 2

# X

This matrix A" is called the generalized inverse of A and has the following o
further properties ?f
N(A) = R(AF), RE(R) = N(AT), i

where R(B) and N(B) denote the range and null space of the matrix B, respectively. 3
For the ease of reference we state the following two theorems which are ﬁ%

due to Masani |2], and to Makagon and Weron [1], respectively. !!
Theorem 1. Let Xn, ne 2, be a g-variate stationary stochastic process j;j

with spectral distribution F. X is full-rank minimal if and only if F \é
is a.c. and its spectral density f is invertible with f'1 e Ly- fﬁ‘
Theorem 2. Let Xn, n ¢ Z be a g-variate stationary stochastic process }%

with spectral measure F. The process Xn is Jo-regular if and only if ma
=

N

(i) F is a.c. with respect to d6, with spectral density f,
(ii) R(f(8)) is constant a.e. (de),

(i) £ Ly
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3. Determination of the generating function.

In this section we give an algorithm for determining the oenerating
function of a (not necessarily full-rank) stationary stochastic process. The
result of this section extends Masani's algorithm developed in [2] to the
non-full-rank case. CQCur techniaoue is essentially that used by Salehi and
Miamee in [5] where the following formula for the two-sided prediction error
matrix I of a Jo-regular process was obtained

2t
{ i

<l | Heel.
0

We will continue this work under the assumption that our process is Jo—requ1ar

or equivalently assuming that conditions (i), (ii), and (iii) of Theorem 2 are

valid. Let h,, h .,h_ be an orthonormal basis for the

], 2’ .. p+],o. q
g-dimensional complex Euclidean space c? such that

.sh , h
p

R(f(8)) = sp (h;, 1 <1 <p) a.e. (do),

N = RY = N(f(8)) = Sp (hy, P*1 < i < q).
Let €15 €95-ens eq be the standard basis of C9. Define the unitary operator
U on Y by Uh, = e 1<i<q. Letting Ry = sp (ei, 1 < i< p) then
Rf = EB(ei, pt1 < i < a). Clearly U maps R onto R, and R' onto R; and U* maps
R] onto R and R{ onto RY As usual we will identify any linear operator on c?

with its matrix with respect to the standard basis of 9. By our choice of

U we have

(3.1) UF(O)U* = ["(e) 0.‘
0 0]
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2 where a(9) is a pxp non-negative matrix valued function whose rank is a.e. -
:i. eaqual to p. Let E
A Yo=UX, nel :
2. be a new stationary stochastic process, then we have E
N , ]
o _ _ 1 (°" —i(m-n)e * v
.- (YY) = (UXUX) = Ulpr | e f(6)ds)u “
[ 0 5
A \'.
(ZTT Zilme -
= ZJJ e~ H{m=1)Bue 5y yxdo ¢
i it

0

s (3.2) - rZTTe"‘('“'")6 ato) 0_’ de.

é “'ZT?JO [o 0|

RIS P

This shows that, for p+1 < k < q, the k-th component Y§ of Y, is zero for all
n,T
)

n has

n « Z. The p-variate statioanry stochastic process Zn = (Yl,...,Y

e ". IAP Y,' ." ',' '.‘

;?Q spectral density q. Since U takes R onto R] and R onto Rf, one can see that

<
= 1 o]’ E - et "'-:7
) (3.3) 9 = |9 = (UFU*)" = u*f"y. X
0 oJ 0 o0 ]
: )

Now since Xn is assumed to be Jo-reqular, Theorem 2 implies that f#(e) is
1

Ty

intearable. Thus (3.2) implies that a ' is intearable and hence by Theorem 1,

.'l r" :"m. v e

; Zn is full-rank minimal.

We are going to utilize Masani's alaorithm to obtain the aeneratina

-,
b A8 e s

14

X

function ¥ and predictor iv of this full-rank minimal procecs Zn’ and then use

‘-'-

this to aet the generating function ¢ and predictor Xv of our process Xn. The

B
a e, N ¢,

following lemma, which reveals the close tie between ¥ and ¢, is crucial in the

o
B

LS v
Hv"."‘.‘ A.'. . '

development of our algorithm. )
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Lemma. Let Xn’ neZ»bea Jo-requ1ar stationary stochastic process with
spectral density f. Let g be the spectral density of the corresponding
full-rank minimal process Zn discussed above. If ¢ and ¥ are the aenerating

functions of Xn and Zn respectively then

[v o]

where U is the unitary matrix obtained above.

Proof. We first note that, since ¢ and ¥ as generating functions are

optimal (cf. Lemma 3.7 and Definition 4.1 in [3]). Now from (3.1) we aet

Yy 0
u) (u* u)*
0 O

g d] ¥ d-
(3.4) f = U* U= (U*
0 QJ 01

on the other hand

f = oo,

Since f has two factors ¢ and

belonging to Lg+, to complete the proof it suffices to show that the latter one
is also optimal (cf. uniqueness Theorem 4.4 of [3]). To prove this we first

note that since the 0-th coefficient W+(0) of ¥ is nonnegative definite and

we have

-
LI
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N
(3.5) §,(0) > 0.
On the other hand if <
(3.6) foyr veld ;
‘ is another factorization of f , then ]

I

(3.7) = UfU* = (UyU*)(UyU*)* "]
0 0 o
but g = ¥Y¥* implies that }
,
r *
(3.8) g 0 _ ¥ o v d] ¢
o o o o [o o_' :
1
)
Since ¥ is the generating function of Zn one can prove that the function ;
‘
v o '
~ . to (l' R
is the generating function of Yn‘ In fact we know that the generatina K
function ¢ of a gq-variate stationary stochastic process Xn is given by ‘
6 =) An/G elM®, !
n=0 '.
where An's are the coefficients in the representation !
Xg = 1 Andp + (XyM(==)) ;
i .
». of Xn in terms of its innovation process
KOS
. ‘
i 9 = Xn - (anM(n-I)) '
2, “
i*f and G = (go,qo) is the predictor error matrix. Comparing Z, with vy = [ZnIO]T i
s
N

] we note that
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Although the coefficients arising in this sum are not unique they will give

us the generating function uniquely, and we have

0 T AT

g
is the optimal factor of [
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] . (3.7) and (3.8) together with the

0

X

d

10

:

L 200 o o Jou J .

1,

g

., .
L . ,
..........

’A"f*ﬁ..‘saﬁ-



e

it
N

)

-,
-

P

oy

13

imply  that
v,(0) 0] f¥(0) o

> (Uy, (0)u*)(uy, (0)u*)*.
Lo ojfo O

This in turn implies that

\y+(0) 0 lyy (u* ¥,(0) o vy s
0 0 0 0

(5,(0))% = (u* v, (0)y,(0)*.
This together with (3.5) shows that & is the optimal factor of f. Thus by

the uniqueness theorem mentioned above

rw 0
=6 =U*r u. Q.E.D.
b o

Now we are ready to aive the algorithm determinina the generating function
of our Jo-regular g-variate stationary stochastic process Xn. Since f satisfies
the conditions (i), (ii), and (iii) of (1.3) one can see that these imnly that
g satisfies the corresponding conditions (i) and (ii) of (1.2).

Thus we can use Masani's algorithm developed in section 4 in [2]

to compute the generating function ¢ of the desired process Xn via the formula

Remark. One can similarly extend the other available algorithms (such

as that in [8]) to obtain corresponding algorithms for the non-full-rank case.
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N 4. Determination of the Predictor. ¥
[ In this section we show that the unique autoregressive series, of [2], ‘fg
< oy
“ giving the linear predictor in the full-rank case, can be used to obtain the - :{
. O
i~ predictor in our non-full-rank case. In fact as we will see, exactly the &ﬁ
. same formula works in this case as well. We continue to assume that the ' qf
- S
fE density f of our stationary stochastic process Xn satisfies conditions (1.3). ;ﬁ:
J Using the notations and results of section 3 we know that l;
, 4 o] 4
- f=u9 9w, -
= 0 0] Fe
., S
& i
- and the density g satisfies conditions (i) and (ii) of (1.2). Thus, using the ‘;’
A =
= technique developed in [2] one can show that =
: 5.3 P -
Z, -kZOEka_k, in K", 8
- 3
- where . T
- g ;i
5 £, =7 C.D 3
i vk nso V0 k-n o
: 3

XK with C, and D, being the k-th Fourier coefficients of ¥ and ¥~  respectively. -
’i Now one can easily verify that 2;.
- n - .'.:.
a A Z o r 0 o
Y = |V =] ik Yo fin He, "

V o] k00 0 o

ane 07 r 07 o, O &

E k c 7 f Y

k n k-n

(4.1) v =1 | " »

0 0 n=0 0 0 Lo 0

Since Y = UX , one can also verify that o

AN i

Xy = U*Yn = U*Yn-

O AP I

’;n.':'ur'r ‘s ‘s ';

v
1




v AR ol . g i . YA G B - i Bt Sl o B ey - 3 - e} v e Vv, [ e

i_,.. ’
J"\.‘ '
N 4
: ¥
L e
by 15 z
R 3
R Hence we have o
. N © 0
- = (1% , vk ] - 2
3 = (kZO 1o o] Y
. .
il - , N
" y(u* VU*Y_, in H', -]
. > k=0 0 0 )
L 3
o Letting F., to be X
x "k [y Ol 3
3 (4.3) Fue = U* v U X
0 0
'f;— we get the following autoregressive series representation for the best linear -
= predictor X_: :
" v o o)
. A~ -
o X =1 F X, .
‘ v k=0 vko-k .
. Now let us examine the coefficients ka in (4.3) more carefully. Doina this we .
T - b
will be able to write ka in terms of the Fourier coefficients of the aenerating N
L
3 - function ® of our original process Xn rather than that of the auxiliary process -
'J'_:.
o Z.. From (4.2) we can write
- E, 0
) F\)k = U* I‘ vk :] u.
» Lo o ;
e )
o Now using (4.1) we have n
A '
N [c 0] D 0 ‘
: Fok = U*( } v -1 ken —]) U -
e n=0 [ 0 0] O 0] <
e S
o K c 0 ;
\ =7 (ux |V ' u) (ux | K|y
b n=0 0 o
.“-: :v
:f.- Thus A\
"o_\' '
L . t
W k N
i F = Z N [
“ \)k n=0 \)‘H’\ k"n .
-.“ .
l-. ‘-‘
ot -
A
2% :
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with - : - 4
Cn 0 D, 0 )]

M= U* U and N =U* u. s

n 0 0 0 0 ]

b b *-

But by the Lemma we have g
v o # gy 6_ '

(4.4) o = U* U and ¢ = U* u. Ly
[0 0 ) 2

[

Thus we observe that Mn and Nn are exactly the n-th Fourier coefficients of

o and o respectively. &
A b‘

Summarizing, we have shown that the best linear predictor XV can be -

b

written exactly in the same form obtained in [2] for the full-rank processes. i
"

i.e. we have F
e Ed q ,

X = ()M )X in H”. o

v 7 o' akg vn Pken o

where M_ and Nn are the n-th Fourier coefficients of ¢ and its aeneralized .
Al

inverse &' (instead of ¢ and its inverse ™1 in the full-rank case). ;
}.
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